Large quantities of heterogeneous, interconnected, systems-level, molecular (multi-omic) data are increasingly becoming available. They provide complementary information about cells, tissues and diseases. We need to utilize them to better stratify patients into risk groups, discover new biomarkers and targets, re-purpose known and discover new drugs to personalize medical treatment. This is nontrivial, because of computational intractability of many underlying problems on large interconnected data (networks, or graphs), necessitating the development of new algorithms for finding approximate solutions (heuristics).
We develop a versatile data fusion artificial intelligence (AI) framework, that also utilizes the state-of-the-art network science methods, to address key challenges in precision medicine from the multi-omics data: better stratification of patients, prediction of biomarkers and targets, and re-purposing of approved drugs to particular patient groups, applied to different types of cancer, Covid-19, Parkinson’s and other diseases. Our new methods stem from graph-regularized non-negative matrix tri-factorization (NMTF), a machine learning technique for dimensionality reduction, inference and co-clustering of heterogeneous datasets, coupled with novel network science algorithms. We utilize our new frameworks to develop methodologies for improving the understanding the molecular organization and diseases from the omics data embedding spaces.
If you would like to attend the seminar, please register here.